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Proton-coupled electron transfer (PCET) is of much current
experimental and theoretical interest.1 When an e- and a H+ transfer
together from one reactant to another (AH+ B f A + HB), the
reaction is hydrogen-atom transfer.1b,c There are also processes in
which e- and H+ both transfer but are separated, such as AH+ B
+ C f A + HB+ + C-. An important example of this second
class of PCET reactions is the formation of tyrosyl radicals in pro-
teins from tyrosine residues, by long-range electron transfer coupled
to deprotonation by a nearby base.2 In photosystem II, oxidation
of tyrosine Z (YZ) by P680•+ likely occurs with transfer of the
tyrosyl proton to a hydrogen-bonded histidine.3 In a number of sys-
tems, the mechanisms of such processes are controversial, especially
whether e- and H+ transfer occurs in two steps (ET and PT) or in
a single concerted PCET process.1-3 Described here are outer-sphere
oxidations of a phenol with a pendent base (abbreviatedHOAr-
NH2, eq 1), both as a model both for the oxidation of YZ and as a
prototype for this class of PCET reactions. Mechanistic studies in-
dicate that the e- and H+ transfer in one kinetic step, with no in-
termediate along the reaction coordinate. Analysis of these unusual
reactions with Marcus theory gives large apparent intrinsic barriers
(λ > 30 kcal mol-1).

HOAr-NH 2 was prepared by addition of benzophenone to
dilithiated 2,4-di-tert-butylphenol and then by treatment with HCl
and finally ammonia.4 An X-ray crystal structure (Figure S3)4

confirms the structure and shows an OH‚‚‚N hydrogen bond, as is
typical for such Mannich bases.5a The O-H and N‚‚‚H distances
are 0.90(3) and 1.75(3) Å (averages of two independent molecules).
Cyclic voltammetry ofHOAr-NH 2 using a glassy carbon working
electrode reveals a quasi-reversible wave at 0.36( 0.02 V (0.1 M
TBAPF6, MeCN, vs Cp2Fe+/0, ∆Ep ) 163 mV). RelatedR-alkyl-
amino phenols undergo similar oxidations to the corresponding
phenoxyl radical/protonated base.6 The potentials for these oxida-
tions are much lower than those for phenol oxidations without pro-
ton movement (e.g.,E ) 1.09 V for 2,4,6-tri-tert-butylphenol (tBu3-
ArOH)7). Monitoring the chemical oxidation ofHOAr-NH 2 by
[N(p-C6H4Br)3]•+ (E ) +0.67 V) in CD3CN shows the disappear-
ance of the1H NMR signals forHOAr-NH 2 and the appearance
of N(p-C6H4Br)3; UV-vis spectra show bleaching of the blue
aminium ion. An EPR spectrum of a reaction mixture in CH2Cl2
shows a new complex multiplet presumably due to•OAr-NH 3

+.4

Reaction ofHOAr-NH 2 with [N(p-C6H4Me)3]•+ ([N(tol)3]•+, E1/2

) 0.38 V), forms an equilibrium mixture (eq 2). Addition of N(tol)3

shifts the equilibrium to the left, as does the addition of triflic acid
(by protonating and thereby removingHOAr-NH 2). These inde-
pendent experiments giveKNtol3 ) 2.0( 0.5.8 This and equilibrium
constants derived from similar reactions with [N(p-C6H4OMe)3]•+

and [N(p-C6H4OMe)2(p-C6H4Br)]•+ confirm the +0.36 V redox
potential ofHOAr-NH 2 (Table 1). These equilibration experiments
indicate the stability of the phenoxyl radical•OAr-NH 3

+, as
expected for a phenoxyl radical with tertiary substituents at the 2,
4, and 6 positions (e.g.,tBu3ArO•).9

The kinetics of outer-sphere oxidations ofHOAr-NH 2 have been
measured in anaerobic MeCN using stopped-flow spectrophotom-
etry. Under pseudo-first-order conditions, the disappearance of
[N(tol)3]•+ follows first-order kinetics, and thekobs varies linearly
with the phenol concentration, indicating a second-order rate law
with kNtol3 ) (1.1( 0.2)× 105 M-1 s-1. Rate constants for different
oxidants are shown in Table 1. With [N(p-C6H4Br)3]•+, electron
transfer is complete within 20 ms even with near stoichiometric
amounts ofHOAr-NH 2, giving kN(ArBr)3 ) (4 ( 2) × 107 M-1 s-1.

The three most likely mechanisms for the oxidation ofHOAr-
NH2 to •OAr-NH 3

+ are shown in Scheme 1. Initial outer-sphere
electron transfer (top path, ET1-PT1) would form the radical cation
•+HOAr-NH 2, which would rapidly rearrange to•OAr-NH 3

+ by
proton transfer. Alternatively, in the bottom PT2-ET2 path, initial
preequilibrium proton transfer (too rapid to be rate limiting) would
give the zwitterion-OAr-NH 3

+ as the species that undergoes

Table 1. Rate and Equilibrium Constants for Oxidations of
HOAr-NH2

oxidant E1/2
a

k
(M-1 s-1) Keq

b

[Fe(bpy)3]3+ 0.70 (4( 1) × 106 >102

[N(p-C6H4Br)3]•+ 0.67 (4( 2) × 107 >102

[Fe(5,5′-Me2bpy)3]3+ 0.58 (1.5( 0.2)× 105 >102

[N(p-C6H4OMe)(p-C6H4Br)2]•+ 0.48 (8( 1) × 105 c
[N(tol)3]•+ 0.38 (1.1( 0.2)× 105 2.0( 0.5
[N(p-C6H4OMe)2(p-C6H4Br)]•+ 0.32 (2.7( 0.3)× 104 0.21( 0.06
[N(p-C6H4OMe)3]•+ 0.16 (1.1( 0.1)× 103 (2.9( 0.3)× 10-4

a Potentials (V) vs FeCp2+/0 ((0.02 V) in MeCN.4 b Keq ) [•OAr-
NH3

+][Red]/[HOAr-NH 2][Ox]. c Not determined.

Scheme 1. Mechanisms for Electron Transfer from HOAr-NH2 to
X+

HOAr-NH 2 + [N(tol)3]
•+ a •OAr-NH 3

+ + N(tol)3

KNtol3

(2)
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electron transfer. Finally, the transfer of both the electron and proton
could occur by concerted PCET, in a single kinetic step.

Three lines of evidence indicate that oxidation proceeds by the
concerted PCET pathway, without involving an intermediate. First,
a primary kinetic isotope effectkH/kD ) 2.4 ( 0.2 is found upon
oxidation of DOAr-ND 2 by [N(tol)3]•+. Neither rate-limiting
electron transfer (ET1-PT1) nor preequilibrium proton transfer
(PT2-ET2) are consistent with this result.

Second, the rates are too fast to be consistent with high-energy
intermediates along the pathway. The∆G°ET1 for the first step in
the ET1-PT1 mechanism,HOAr-NH 2 + [N(tol)3]•+ f •+HOAr-
NH2 + [N(tol)3], is +16.4 kcal mol-1, Keq,ET1 ) 10-12, estimated
using E(tBu3ArOH•+/0)7 as a model forE(HOAr-NH 2/•+HOAr-
NH2).4 The ∆G°ET1 is larger than∆Gq ) 11 kcal mol-1 from the
Eyring equation.10 From another perspective,Keq,ET1) 10-12 means
that the forward rate constantkET1 cannot be 105 M-1 s-1 because
back ET would have occur with an unreasonablekET-1 ) 1017 M-1

s-1. A very short-lived successor complex [•+HOAr-NH 2|NAr3]
is conceivable but unlikely for similar reasons.11 In the PT2-ET2
pathway, an upper limit ofKPT2 < 10-4 for the initial preequilibrium
PT can be estimated following studies of other Mannich bases.5

Optical spectra of saturated solutions ofHOAr-NH 2 in MeCN show
no evidence for the zwitterion-OAr-NH 3

+ (using the spectrum of
the phenoxide-OAr-NH 2 as a model for this species4,5). With KPT2

< 10-4, the observedk > 107 M-1 s-1 for [N(p-C6H4Br)3]•+ would
requirekET2 from -OAr-NH 3

+ to occur at>1011 M-1 s-1, faster
than the diffusion limit.

Third, concerted PCET is indicated by the dependence of the
rate constants on driving force,∆∆Gq/∆∆G° ) 0.53.4 This indicates
that the reactions are in the regime|∆G°| , λ expected for the
PCET path. In the stepwise paths,kET-1 andkET2 would need to be
close to (if not faster than) the diffusion limit (see above), a regime
where|∆G°| = λ and∆∆Gq/∆∆G° is far from 1/2.12

The oxidations ofHOAr-NH 2 therefore occur by concerted
proton and electron transfer (note thatconcerteddoes not imply
synchronous). Concerted PCET is advantageous because it avoids
the higher free energy intermediates•+HOAr-NH 2 and -OAr-
NH3

+. This contradicts the frequent intuition that stepwise mech-
anisms are in general preferred to concerted PCET.

HOAr-NH 2 is an unusual electron-transfer reagent because of
its intramolecular proton transfer. Using Marcus theory to analyze
PCET reactions is of experimental13 and theoretical interest.14

k(HOAr-NH 2+[NAr3]•+) are well fit by the adiabatic Marcus
equation (Figure 1), with an intrinsic barrierλ ) 34 kcal mol-1.
The limited data for [Fe(R2bpy)3]3+ give λ ≈ 40 kcal mol-1,
consistent with the higher intrinsic barrier for iron complexes.15

These intrinsic barriers are significantly larger than those for most
organic molecules, such asλ ) 12 kcal mol-1 for [N(tol)3]•+/0 self-

exchange (that should have a comparable donor/acceptor distance).15b

Hammarstro¨m et al. have reached a similar conclusion, reporting
λ ) 55 kcal mol-1 for the related aqueous PCET oxidation of
tyrosine to tyrosyl radical+ H3O+ by a tethered Ru(bpy)3

3+.13a,14c

These analyses assume adiabatic ET; nonadiabatic behavior would
give lower values ofλ. In either case, the concerted PCET is
intrinsically more difficult than related ET reactions, either because
of a largerλ or due to increased nonadiabaticity.

In sum, the mechanism of one-electron oxidation of the phenol-
amineHOAr-NH 2 involves intramolecular proton transfer concerted
with transfer of the electron in a single kinetic step. Stepwise
mechanisms involving initial ET or PT are disfavored because they
involve high-energy intermediates, which overshadows the larger
intrinsic barrier for the proton-coupled electron transfer. The
oxidation ofHOAr-NH 2 is a prototype of PCET reactions in which
the e- and H+ are separated. It is also a good model for biologically
important oxidations of tyrosine residues to tyrosyl radicals. Further
studies to define the characteristics of this class of PCET reaction
are in progress.
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Figure 1. log(k) vs E1/2(oxidant) for oxidation ofHOAr-NH 2 by NAr3
•+

(b) and [Fe(R2bpy)3]3+ (O). The curves are fits tok ) 1011 exp(-[1/4λ(1
+ ∆G°/λ)2]/kT) with λ ) 34 and 40 kcal mol-1, respectively.
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